© Chempedia.sk 2025
Zhrnutie učiva

Zhrnutie učiva z chémie s interaktívnymi prvkami

Pre študentov a učiteľov

Vhodné pre študentov aj pedagógov

Pre stredoškolákov

Ideálne pre stredoškolákov, no užitočné aj pre vysokoškolákov

Najnovšie články

Prvky 7. skupiny - mangán, technécium, rénium

Prvky 7. skupiny (mangán, technécium, rénium a bohrium) sú prechodné kovy s valenčnou konfiguráciou (n−1)d⁵ ns², ktorá podmieňuje ich schopnosť tvoriť zlúčeniny v širokom spektre oxidačných stavov (od +II až po +VII), pričom stabilita stavu +VII rastie smerom nadol. Tieto kovy a ich zlúčeniny majú významné uplatnenie: mangán v oceliarstve a batériách, technécium v medicínskej diagnostike a rénium v superzliatinách a katalýze.

Prvky 6. skupiny - chróm, molybdén, volfrám

Prvky 6. skupiny - chróm, molybdén, volfrám

Prvky 6. skupiny (chróm, molybdén, volfrám a seaborgium) sú tvrdé prechodné kovy, pričom Mo a najmä W vynikajú extrémne vysokými teplotami topenia. Charakterizuje ich tvorba zlúčenín vo viacerých oxidačných stavoch (+II až +VI), s najstabilnejším +III pre Cr a +VI pre Mo a W, a častá tvorba farebných komplexov. Mo a W sú si chemicky veľmi podobné (lantanoidová kontrakcia) a majú zásadný význam v metalurgii, priemyselných katalyzátoroch a ako špeciálne materiály.

Prvky 5. skupiny - vanád, niób, tantal

Prvky 5. skupiny - vanád, niób, tantal

Prvky 5. skupiny (vanád, niób, tantal a dubnium) sú tvrdé prechodné kovy s vysokými teplotami topenia a charakteristickou sivastou farbou. Majú päť valenčných elektrónov, pričom vo svojich zlúčeninách vystupujú najčastejšie v oxidačnom stave +V, hoci vanád je známy širšou škálou oxidačných stavov. Niób a tantal sú si chemicky mimoriadne podobné v dôsledku lantanoidovej kontrakcie a vyznačujú sa vynikajúcou odolnosťou voči korózii vďaka ochrannej pasivačnej vrstve oxidu, čo umožňuje ich využitie v náročných podmienkach.

Prvky 4. skupiny - titán, zirkón, hafnium

Prvky 4. skupiny - titán, zirkón, hafnium

Prvky 4. skupiny (Ti, Zr, Hf, Rf) sú tvrdé prechodné kovy s vysokými teplotami topenia a vynikajúcou odolnosťou voči korózii, ktorú zabezpečuje pasivačná vrstva oxidu. Ich atómy majú štyri valenčné elektróny a vo svojich zlúčeninách vystupujú takmer výlučne v stabilnom oxidačnom stave +IV. Dôsledkom lantanoidovej kontrakcie majú Zr a Hf takmer identické atómové polomery a veľmi podobné chemické vlastnosti, čo komplikuje ich separáciu. Tieto prvky a ich zlúčeniny majú významné využitie v letectve (Ti), jadrovej energetike (Zr, Hf) a medicíne (Ti, ZrO₂).

Aktinoidy (Prvky 7. periódy, f-blok)

Aktinoidy (Prvky 7. periódy, f-blok)

Aktinoidy, 14 rádioaktívnych f-prvkov nasledujúcich za aktíniom (Th až Lr), charakterizuje postupné zapĺňanie 5f orbitálov a jav aktinoidovej kontrakcie. Na rozdiel od lantanoidov vykazujú oveľa väčšiu variabilitu oxidačných stavov, najmä ľahšie prvky (Th až Am, stavy +III až +VII), kým pre ťažšie aktinoidy (od Cm ďalej) je dominantný stav +III. V prírode sa vo významných množstvách vyskytujú len tórium a urán; ostatné (transurány) sa pripravujú umelo. Ich hlavný význam spočíva v jadrovej energetike a zbraniach (U, Pu), špecifické izotopy sa využívajú aj vo vesmírnej technológii, detektoroch dymu či ako zdroje neutrónov.

Lantanoidy (Prvky 6. periódy, f-blok)

Lantanoidy (Prvky 6. periódy, f-blok)

Lantanoidy, štrnásť f-prvkov (Ce až Lu) nasledujúcich za lantánom, charakterizuje postupné zapĺňanie 4f orbitálov a jav lantanoidovej kontrakcie, spôsobujúci ich veľkú chemickú podobnosť. Ich dominantným oxidačným stavom je +III, výnimočne tvoria aj stav +II (napr. Eu, Yb) a +IV (napr. Ce). Tieto reaktívne, striebrolesklé kovy sa vyskytujú ako zmes v mineráloch (napr. monazit) a ich separácia je náročná. Majú kľúčové využitie v moderných technológiách ako súčasť silných magnetov (Nd, Sm), luminoforov (Eu, Tb), katalyzátorov (Ce), laserov (Nd, Er) a v medicíne (Gd).

Kontakt

forward
forward